Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 652
Filtrar
1.
Int Immunopharmacol ; 130: 111678, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38368773

RESUMO

Aldosterone is a key mineralocorticoid involved in regulating the concentration of blood electrolytes and physiological volume balance. Activation of mineralocorticoid receptor (MR) has been recently reported to participate in adaptive and innate immune responses under inflammation. Here, we evaluated the role of aldosterone and MR in inflammation bowel diseases (IBD). Aldosterone elevated in the colon of DSS-induced colitis mice. Aldosterone addition induced IL17 production and ROS/RNS level in group 3 innate lymphoid cells (ILC3s) and exacerbated intestinal injury. A selective mineralocorticoid receptor antagonism, eplerenone, inhibited IL17-producing ILC3s and its ROS/RNS production, protected mice from DSS-induced colitis. Mice lacking Nr3c2 (MR coding gene) in ILC3s exhibited decreased IL17 and ROS/RNS production, which alleviated colitis and colitis-associated colorectal cancer (CAC). Further experiments revealed that MR could directly bind to IL17A promoter and facilitate its transcription, which could be enhanced by aldosterone. Thus, our findings demonstrated the critical role of aldosterone-MR-IL17 signaling in ILC3s and gut homeostasis, indicating the therapeutic strategy of eplerenone in IBD clinical trial.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Camundongos , Animais , Receptores de Mineralocorticoides/genética , Receptores de Mineralocorticoides/metabolismo , Aldosterona/metabolismo , Eplerenona , Mineralocorticoides/metabolismo , Imunidade Inata , Espécies Reativas de Oxigênio/metabolismo , Linfócitos , Colite/induzido quimicamente , Colite/tratamento farmacológico , Inflamação/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-38043634

RESUMO

The glucocorticoid cortisol is the end product of the hypothalamic-pituitary-adrenal (HPA) axis and crucial for the stress response in humans. Cortisol regulates numerous biological functions by binding to two different types of receptors: the mineralocorticoid receptor (MR) and the glucocorticoid receptor (GR). Both receptors are found in the brain where they are crucially involved in various mental functions and in feedback inhibition of cortisol release. The precise role of both receptors in the human stress response is not completely understood. In this study, we examined the effects of pharmacological blockade of the MR or the GR on stress-induced cortisol release in a sample of 318 healthy young men (M = 25.42, SD = 5.01). Participants received the MR antagonist spironolactone (300 mg), the GR antagonist mifepristone (600 mg), or a placebo and were subjected 90 min later to a social-evaluative stressor (Trier Social Stress Test) or a non-stressful control condition. We found significantly higher stress-induced cortisol release in the spironolactone group, whereas participants after mifepristone administration did not differ from the control groups. These results suggest that MR blockade results in attenuated fast negative feedback processes and emphasize the important role of the MR during the early phase of the stress response.


Assuntos
Mifepristona , Espironolactona , Masculino , Humanos , Espironolactona/farmacologia , Espironolactona/metabolismo , Mifepristona/farmacologia , Mifepristona/metabolismo , Hidrocortisona/metabolismo , Mineralocorticoides/metabolismo , Mineralocorticoides/farmacologia , Receptores de Glucocorticoides/metabolismo , Antagonistas de Receptores de Mineralocorticoides/farmacologia , Antagonistas de Receptores de Mineralocorticoides/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Receptores de Mineralocorticoides/metabolismo , Estresse Psicológico/tratamento farmacológico
4.
Methods Enzymol ; 689: 167-200, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37802570

RESUMO

11ß-Hydroxysteroid dehydrogenase type 2 (11ß-HSD2) converts active 11ß-hydroxyglucocorticoids to their inactive 11-keto forms, fine-tuning the activation of mineralocorticoid and glucocorticoid receptors. 11ß-HSD2 is expressed in mineralocorticoid target tissues such as renal distal tubules and cortical collecting ducts, and distal colon, but also in placenta where it acts as a barrier to reduce the amount of maternal glucocorticoids that reach the fetus. Disruption of 11ß-HSD2 activity by genetic defects or inhibitors causes the syndrome of apparent mineralocorticoid excess (AME), characterized by hypernatremia, hypokalemia and hypertension. Secondary hypertension due to 11ß-HSD2 inhibition has been observed upon consumption of excessive amounts of licorice and in patients treated with the azole fungicides posaconazole and itraconazole. Furthermore, inhibition of 11ß-HSD2 during pregnancy with elevated exposure of the fetus to cortisol can cause neurological complications with a lower intelligence quotient, higher odds of attention deficit and hyperactivity disorder as well as metabolic reprogramming with an increased risk of cardio-metabolic disease in adulthood. This chapter describes in vitro methods for the determination of 11ß-HSD2 activity that can be applied to identify inhibitors that may cause secondary hypertension and characterize the enzyme's activity in disease models. The included decision tree and the list of methods with their advantages and disadvantages aim to enable the reader to select and apply an in vitro method suitable for the scientific question and the equipment available in the respective laboratory.


Assuntos
Hipertensão , Síndrome de Excesso Aparente de Minerolocorticoides , Humanos , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/genética , Mineralocorticoides/metabolismo , Hipertensão/genética , Hipertensão/metabolismo , Hidrocortisona
5.
Cells ; 12(13)2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37443819

RESUMO

The activation of the mineralocorticoid (MR) and glucocorticoid (GR) receptors on peripheral sensory neurons seems to modify pain perception through both direct non-genomic and indirect genomic pathways. These distinct subpopulations of sensory neurons are not known for peripheral human nerves. Therefore, we examined MR and GR on subpopulations of sensory neurons in sectioned human and rat peripheral nerves. Real-time PCR (RT-PCR) and double immunofluorescence confocal analysis of MR and GR with the neuronal markers PGP9.5, neurofilament 200 (NF200), and the potential pain signaling molecules CGRP, Nav1.8, and TRPV1 were performed in human and rat nerve tissue. We evaluated mechanical hyperalgesia after intrathecal administration of GR and MR agonists. We isolated MR- and GR-specific mRNA from human peripheral nerves using RT-PCR. Our double immunofluorescence analysis showed that the majority of GR colocalized with NF200 positive, myelinated, mechanoreceptive A-fibers and, to a lesser extent, with peripheral peptidergic CGRP-immunoreactive sensory nerve fibers in humans and rats. However, the majority of MR colocalized with CGRP in rat as well as human nerve tissue. Importantly, there was an abundant colocalization of MR with the pain signaling molecules TRPV1, CGRP, and Nav1.8 in human as well as rat nerve tissue. The intrathecal application of the GR agonist reduced, and intrathecal administration of an MR agonist increased, mechanical hyperalgesia in rats. Altogether, these findings support a translational approach in mammals that aims to explain the modulation of sensory information through MR and GR activation. Our findings show a significant overlap between humans and rats in MR and GR expression in peripheral sensory neurons.


Assuntos
Hiperalgesia , Mineralocorticoides , Humanos , Ratos , Animais , Mineralocorticoides/metabolismo , Hiperalgesia/metabolismo , Receptores de Glucocorticoides/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Perna (Membro) , Dor/metabolismo , Células Receptoras Sensoriais/metabolismo , Biologia , Mamíferos/metabolismo
6.
Front Endocrinol (Lausanne) ; 14: 1163787, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37113483

RESUMO

Aldosterone, as a mineralocorticoid of adrenal origin, has effects that are not limited to the urinary tract. As an important regulator in Vasoactive hormone pathways, aldosterone may play an effect in the pathogenesis of diabetic retinopathy (DR) through the regulation of oxidative stress, vascular regulation, and inflammatory mechanisms. This implies that mineralocorticoids, including aldosterone, have great potential and value for the diagnosis and treatment of DR. Because early studies did not focus on the intrinsic association between mineralocorticoids and DR, targeted research is still in its infancy and there are still many obstacles to its application in the clinical setting. Recent studies have improved the understanding of the effects of aldosterone on DR, and we review them with the aim of exploring possible mechanisms for the treatment and prevention of DR.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Humanos , Aldosterona/metabolismo , Mineralocorticoides/metabolismo , Retinopatia Diabética/etiologia , Retinopatia Diabética/tratamento farmacológico , Antagonistas de Receptores de Mineralocorticoides/uso terapêutico , Diabetes Mellitus/tratamento farmacológico
8.
World J Biol Psychiatry ; 24(2): 149-161, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35615969

RESUMO

OBJECTIVES: Hippocampal neurogenesis is closely related to learning and memory, and hippocampal neurogenesis disorders are involved in the development of many neurodegenerative diseases. Mineralocorticoid receptor (MR) plays a vital role in regulating stress response, neuroendocrine and cognitive functions, and is involved in regulating the integrity and stability of neural networks. However, the potential role of MR in the pathogenesis of postoperative cognitive dysfunction (POCD) is unclear. Therefore, this study evaluated the effect and mechanism of MR activation on postoperative hippocampal neurogenesis and cognitive function in aged mice. METHODS: 18-month-old male Kunming mice were randomly divided into Control group (C group), Surgery group (S group), Surgery+ Aldosterone group (S+Aldo group), Surgery + Wortmannin group (S+Wort group), Surgery + Aldosterone + Wortmannin group (S+Aldo+Wort group). Laparotomy was used to establish an animal model of postoperative cognitive dysfunction. After surgery, mice were intraperitoneally injected with aldosterone (100 ug/kg,150 ug/kg,200 ug/kg) and / or wortmannin (1 mg/kg); One day before the sacrifice, mice were injected intraperitoneally with BrdU (100 mg / kg / time, 3 times in total). Mice were subjected to Morris water maze and field tests at 1, 3, 7, and 14 days after surgery. Immunofluorescence was used to detect the number of BrdU +, Nestin +, BrdU/Nestin + positive cells in the hippocampal dentate gyrus of mice at 1, 3, 7 and 14 days after surgery. Western-blot was used to detect PI3K/Akt/GSK-3ß signaling pathway related proteins Akt, p-Akt, GSK-3ß, P-GSK-3ß expression. RESULTS: Stress impairs the performance of aged mice in water maze and open field tests, reduces the number of BrdU/Nestin+ cells in the hippocampal dentate gyrus, and inhibits the phosphorylation of Akt and GSK-3ß proteins in the hippocampus. Aldosterone treatment promotes P-Akt, P-GSK-3ß protein expression and hippocampal neural stem cell proliferation, and improves postoperative cognitive dysfunction. However, wortmannin treatment significantly reversed these effects of aldosterone. CONCLUSIONS: The mineralocorticoid receptor agonist aldosterone promotes the proliferation of hippocampal neural stem cells and improves cognitive dysfunction in aged mice after surgery, and the mechanism may be related to activation of PI3K/Akt/GSK-3ß signaling.


Assuntos
Células-Tronco Neurais , Complicações Cognitivas Pós-Operatórias , Camundongos , Masculino , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/farmacologia , Aldosterona/metabolismo , Aldosterona/farmacologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Glicogênio Sintase Quinase 3 beta/farmacologia , Nestina/metabolismo , Nestina/farmacologia , Complicações Cognitivas Pós-Operatórias/metabolismo , Complicações Cognitivas Pós-Operatórias/patologia , Receptores de Mineralocorticoides/metabolismo , Mineralocorticoides/metabolismo , Mineralocorticoides/farmacologia , Bromodesoxiuridina/metabolismo , Bromodesoxiuridina/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Wortmanina/metabolismo , Wortmanina/farmacologia , Hipocampo , Células-Tronco Neurais/metabolismo , Neurogênese , Cognição , Proliferação de Células
9.
Int J Biol Macromol ; 220: 837-851, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35987363

RESUMO

In diabetic nephropathy, hyperglycemia elevates albumin glycation and also results in increased plasma aldosterone. Both glycation and aldosterone are reported to cause oxidative stress by downregulating the NRF-2 pathway and thereby resulting in reduced levels of antioxidants and glycation detoxifying enzymes. We hypothesize that an interaction between aldosterone and glycated albumin may be responsible for amplified oxidative stress and concomitant renal cell damage. Hence, human serum albumin was glycated by methylglyoxal (MGO) in presence of aldosterone. Different structural modifications of albumin, functional modifications and aldosterone binding were analyzed. HEK-293 T cells were treated with aldosterone+glycated albumin along with inhibitors of receptors for mineralocorticoid (MR) and advanced glycation endproducts (RAGE). Cellular MGO content, antioxidant markers (nitric oxide, glutathione, catalase, superoxide dismutase, glutathione peroxidase), detoxification enzymes (aldose reductase, Glyoxalase I, II), their expression along with NRF-2 and Keap-1 were measured. Aldosterone binds to albumin with high affinity which is static and spontaneous. Cell treatment by aldosterone+glycated albumin increased intracellular MGO, MR and RAGE expression; hampered antioxidant, detoxification enzyme activities and reduced NRF-2, Keap-1 expression. Thus, the glycated albumin-aldosterone interaction and its adverse effect on renal cells were confirmed. The results will help in developing better pharmacotherapeutic strategies for diabetic nephropathy.


Assuntos
Nefropatias Diabéticas , Lactoilglutationa Liase , Aldeído Redutase/metabolismo , Aldosterona/sangue , Antioxidantes/metabolismo , Catalase/metabolismo , Nefropatias Diabéticas/tratamento farmacológico , Glutationa , Glutationa Peroxidase/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Células HEK293 , Humanos , Lactoilglutationa Liase/metabolismo , Óxido de Magnésio , Mineralocorticoides/metabolismo , Óxido Nítrico , Aldeído Pirúvico/farmacologia , Albumina Sérica Humana , Transdução de Sinais , Superóxido Dismutase/metabolismo , Albumina Sérica Glicada
10.
Cells ; 11(9)2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35563683

RESUMO

The Mineralocorticoid Receptor (MR) mediates the sodium-retaining action of aldosterone in the distal nephron, but mechanisms regulating MR expression are still poorly understood. We previously showed that RNA Binding Proteins (RBPs) regulate MR expression at the post-transcriptional level in response to variations of extracellular tonicity. Herein, we highlight a novel regulatory mechanism involving the recruitment of microRNAs (miRNAs) under hypertonicity. RT-qPCR validated miRNAs candidates identified by high throughput screening approaches and transfection of a luciferase reporter construct together with miRNAs Mimics or Inhibitors demonstrated their functional interaction with target transcripts. Overexpression strategies using Mimics or lentivirus revealed the impact on MR expression and signaling in renal KC3AC1 cells. miR-324-5p and miR-30c-2-3p expression are increased under hypertonicity in KC3AC1 cells. These miRNAs directly affect Nr3c2 (MR) transcript stability, act with Tis11b to destabilize MR transcript but also repress Elavl1 (HuR) transcript, which enhances MR expression and signaling. Overexpression of miR-324-5p and miR-30c-2-3p alter MR expression and signaling in KC3AC1 cells with blunted responses in terms of aldosterone-regulated genes expression. We also confirm that their expression is increased by hypertonicity in vivo in the kidneys of mice treated with furosemide. These findings may have major implications for the pathogenesis of renal dysfunctions, sodium retention, and mineralocorticoid resistance.


Assuntos
MicroRNAs/metabolismo , Receptores de Mineralocorticoides , Aldosterona/metabolismo , Animais , Rim/metabolismo , Camundongos , MicroRNAs/genética , Mineralocorticoides/metabolismo , Receptores de Mineralocorticoides/genética , Receptores de Mineralocorticoides/metabolismo , Transdução de Sinais , Sódio/metabolismo
11.
Int J Mol Sci ; 23(3)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35163201

RESUMO

Central serous chorioretinopathy (CSCR) is a retinal disease affecting the retinal pigment epithelium (RPE) and the choroid. This is a recognized side-effect of glucocorticoids (GCs), administered through nasal, articular, oral and dermal routes. However, CSCR does not occur after intraocular GCs administration, suggesting that a hypothalamic-pituitary-adrenal axis (HPA) brake could play a role in the mechanistic link between CSCR and GS. The aim of this study was to explore this hypothesis. To induce HPA brake, Lewis rats received a systemic injection of dexamethasone daily for five days. Control rats received saline injections. Baseline levels of corticosterone were measured by Elisa at baseline and at 5 days in the serum and the ocular media and dexamethasone levels were measured at 5 days in the serum and ocular media. The expression of genes encoding glucocorticoid receptor (GR), mineralocorticoid receptors (MR), and the 11 beta hydroxysteroid dehydrogenase (HSD) enzymes 1 and 2 were quantified in the neural retina and in RPE/ choroid. The expression of MR target genes was quantified in the retina (Scnn1A (encoding ENac-α, Kir4.1 and Aqp4) and in the RPE/choroid (Shroom 2, Ngal, Mmp9 and Omg, Ptx3, Plaur and Fosl-1). Only 10% of the corticosterone serum concentration was measured in the ocular media. Corticosterone levels in the serum and in the ocular media dropped after 5 days of dexamethasone systemic treatment, reflecting HPA axis brake. Whilst both GR and MR were downregulated in the retina without MR/GR imbalance, in the RPE/choroid, both MR/GR and 11ß-hsd2/11ß-hsd1 ratio increased, indicating MR pathway activation. MR-target genes were upregulated in the RPE/ choroid but not in the retina. The psychological stress induced by the repeated injection of saline also induced HPA axis brake with a trend towards MR pathway activation in RPE/ choroid. HPA axis brake causes an imbalance of corticoid receptors expression in the RPE/choroid towards overactivation of MR pathway, which could favor the occurrence of CSCR.


Assuntos
Glucocorticoides/metabolismo , Mineralocorticoides/metabolismo , Retina/metabolismo , Animais , Coriorretinopatia Serosa Central/tratamento farmacológico , Coriorretinopatia Serosa Central/fisiopatologia , Corioide/efeitos dos fármacos , Corioide/metabolismo , Corticosterona/sangue , Dexametasona/metabolismo , Dexametasona/farmacologia , Olho/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Fenômenos Fisiológicos Oculares/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/metabolismo , Ratos , Ratos Endogâmicos Lew , Receptores de Glucocorticoides/metabolismo , Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
12.
Eur J Endocrinol ; 185(5): 729-741, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34524979

RESUMO

CONTEXT: 17α-Hydroxylase/17,20-lyase deficiency (17OHD) caused by mutations in the CYP17A1 gene is a rare form of congenital adrenal hyperplasia typically characterised by cortisol deficiency, mineralocorticoid excess and sex steroid deficiency. OBJECTIVE: To examine the phenotypic spectrum of 17OHD by clinical and biochemical assessment and corresponding in silico and in vitro functional analysis. DESIGN: Case series. PATIENTS AND RESULTS: We assessed eight patients with 17OHD, including four with extreme 17OHD phenotypes: two siblings presented with failure to thrive in early infancy and two with isolated sex steroid deficiency and normal cortisol reserve. Diagnosis was established by mass spectrometry-based urinary steroid profiling and confirmed by genetic CYP17A1 analysis, revealing homozygous and compound heterozygous sequence variants. We found novel (p.Gly111Val, p.Ala398Glu, p.Ile371Thr) and previously described sequence variants (p.Pro409Leu, p.Arg347His, p.Gly436Arg, p.Phe53/54del, p.Tyr60IlefsLys88X). In vitro functional studies employing an overexpression system in HEK293 cells showed that 17,20-lyase activity was invariably decreased while mutant 17α-hydroxylase activity retained up to 14% of WT activity in the two patients with intact cortisol reserve. A ratio of urinary corticosterone over cortisol metabolites reflective of 17α-hydroxylase activity correlated well with clinical phenotype severity. CONCLUSION: Our findings illustrate the broad phenotypic spectrum of 17OHD. Isolated sex steroid deficiency with normal stimulated cortisol has not been reported before. Attenuation of 17α-hydroxylase activity is readily detected by urinary steroid profiling and predicts phenotype severity. SIGNIFICANCE STATEMENT: Here we report, supported by careful phenotyping, genotyping and functional analysis, a prismatic case series of patients with congenital adrenal hyperplasia due to 17α-hydroxylase (CYP17A1) deficiency (17OHD). These range in severity from the abolition of function, presenting in early infancy, and unusually mild with isolated sex steroid deficiency but normal ACTH-stimulated cortisol in adult patients. These findings will guide improved diagnostic detection of CYP17A1 deficiency.


Assuntos
Esteroide 17-alfa-Hidroxilase/genética , Adolescente , Hiperplasia Suprarrenal Congênita/genética , Amenorreia/genética , Simulação por Computador , Corticosterona/urina , Insuficiência de Crescimento/enzimologia , Insuficiência de Crescimento/genética , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Hormônios Esteroides Gonadais/deficiência , Ginecomastia/etiologia , Ginecomastia/genética , Células HEK293 , Humanos , Hidrocortisona/deficiência , Lactente , Recém-Nascido , Masculino , Mineralocorticoides/metabolismo , Mutação/genética , Fenótipo , Esteroides/urina , Adulto Jovem
13.
J Steroid Biochem Mol Biol ; 214: 105988, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34464733

RESUMO

11ß-Hydroxysteroid dehydrogenase (11ß-HSD)-dependent conversion of cortisol to cortisone and corticosterone to 11-dehydrocorticosterone are essential in regulating transcriptional activities of mineralocorticoid receptors (MR) and glucocorticoid receptors (GR). Inhibition of 11ß-HSD by glycyrrhetinic acid metabolites, bioactive components of licorice, causes sodium retention and potassium loss, with hypertension characterized by low renin and aldosterone. Essential hypertension is a major disease, mostly with unknown underlying mechanisms. Here, we discuss a putative mechanism for essential hypertension, the concept that endogenous steroidal compounds acting as glycyrrhetinic acid-like factors (GALFs) inhibit 11ß-HSD dehydrogenase, and allow for glucocorticoid-induced MR and GR activation with resulting hypertension. Initially, several metabolites of adrenally produced glucocorticoids and mineralocorticoids were shown to be potent 11ß-HSD inhibitors. Such GALFs include modifications in the A-ring and/or at positions 3, 7 and 21 of the steroid backbone. These metabolites may be formed in peripheral tissues or by gut microbiota. More recently, metabolites of 11ß-hydroxy-Δ4androstene-3,17-dione and 7-oxygenated oxysterols have been identified as potent 11ß-HSD inhibitors. In a living system, 11ß-HSD isoforms are not exposed to a single substrate but to several substrates, cofactors, and various inhibitors simultaneously, all at different concentrations depending on physical state, tissue and cell type. We propose that this "cloud" of steroids and steroid-like substances in the microenvironment determines the 11ß-HSD-dependent control of MR and GR activity. A dysregulated composition of this cloud of metabolites in the respective microenvironment needs to be taken into account when investigating disease mechanisms, for forms of low renin, low aldosterone hypertension.


Assuntos
11-beta-Hidroxiesteroide Desidrogenases/metabolismo , Regulação Enzimológica da Expressão Gênica , Ácido Glicirretínico/farmacologia , Aldosterona/metabolismo , Animais , Pressão Sanguínea , Corticosterona/análogos & derivados , Hipertensão Essencial/metabolismo , Feminino , Microbioma Gastrointestinal , Glucocorticoides/metabolismo , Células HEK293 , Humanos , Hidrocortisona/metabolismo , Hidroxiesteroide Desidrogenases/metabolismo , Concentração Inibidora 50 , Masculino , Mineralocorticoides/metabolismo , Extratos Vegetais , Isoformas de Proteínas , Ratos , Receptores de Glucocorticoides , Renina/metabolismo , Esteroides/metabolismo
14.
BMC Pregnancy Childbirth ; 21(1): 490, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34233642

RESUMO

BACKGROUND: It was reported that steroid-related gene expressions in the adipose tissue (AT) of women differ between women affected with polycystic ovary syndrome (PCOS) and non-PCOS. Although association between PCOS in mother and offspring's health is a crucial issue, there are few studies focusing on AT of pregnant women suffering from PCOS. Our objectives were to determine the differences between mRNA expression levels of key steroid-converting enzymes in abdominal subcutaneous AT of pregnant women afflicted with PCOS and non-PCOS. METHODS: Twelve pregnant women with PCOS (case) and thirty six non-PCOS pregnant women (control) (1:3 ratio; age- and BMI-matched) undergoing cesarean section were enrolled for the present study. Expressions of fifteen genes related to steriodogenesis in abdominal subcutaneous AT were investigated using quantitative real-time PCR. RESULTS: No significant differences were detected with respect to age, BMI (prior pregnancy and at delivery day), gestational period and parity among pregnant women with PCOS and non-PCOS. Most of the sex steroid-converting genes except 17ß-Hydroxysteroid dehydrogenases2 (17BHSD2), were highly expressed on the day of delivery in subcutaneous AT. Women with PCOS showed significantly higher mRNA levels of steroidgenic acute regulator (STAR; P < 0.001), cytochrome P450 monooxygenase (CYP11A1; P < 0.05), 17α-hydroxylase (CYP17A1; P < 0.05), and 11ß-Hydroxysteroid dehydrogenase (11BHSD1 and 11BHSD2; P < 0.05). The expression of steroid 21-hydroxylase (CYP21) in non-PCOS was fourfold higher than those of women with PCOS (P < 0.001). There were no significant differences between relative expression of aromatase cytochrome P450 (CYP19A1), 3ß-hydroxysteroid dehydrogenase (3BHSD1 and 3BHSD2), and 17BHSD family (1, 3, 5, 7, and 12) between the two groups. CONCLUSION: The expression levels of genes related to sex steroids metabolism were similar to age-matched and BMI- matched pregnant non-PCOS and pregnant women with PCOS at delivery day. However, the alterations in gene expressions involved in glucocorticoids and mineralocorticoids metabolism were shown. It is necessary to point out that further studies regarding functional activity are required. More attention should be given to AT of pregnant women with PCOS that was previously ignored.


Assuntos
Hormônios Esteroides Gonadais/metabolismo , Hidroxiesteroide Desidrogenases/metabolismo , Síndrome do Ovário Policístico/genética , Esteroide Hidroxilases/metabolismo , Gordura Subcutânea Abdominal/metabolismo , Adulto , Estudos de Casos e Controles , Cesárea , Feminino , Expressão Gênica/genética , Glucocorticoides/metabolismo , Humanos , Mineralocorticoides/metabolismo , Fosfoproteínas/metabolismo , Gravidez , RNA Mensageiro/metabolismo
15.
Int J Mol Sci ; 22(10)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34069759

RESUMO

Sexual dimorphism involves differences between biological sexes that go beyond sexual characteristics. In mammals, differences between sexes have been demonstrated regarding various biological processes, including blood pressure and predisposition to develop hypertension early in adulthood, which may rely on early events during development and in the neonatal period. Recent studies suggest that corticosteroid signaling pathways (comprising glucocorticoid and mineralocorticoid signaling pathways) have distinct tissue-specific expression and regulation during this specific temporal window in a sex-dependent manner, most notably in the kidney. This review outlines the evidence for a gender differential expression and activation of renal corticosteroid signaling pathways in the mammalian fetus and neonate, from mouse to human, that may favor mineralocorticoid signaling in females and glucocorticoid signaling in males. Determining the effects of such differences may shed light on short term and long term pathophysiological consequences, markedly for males.


Assuntos
Corticosteroides/metabolismo , Rim/embriologia , Aldosterona/metabolismo , Animais , Pressão Sanguínea/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Glucocorticoides/metabolismo , Humanos , Hipertensão/metabolismo , Rim/metabolismo , Mineralocorticoides/metabolismo , Organogênese , Receptores de Glucocorticoides/metabolismo , Receptores de Mineralocorticoides/metabolismo , Caracteres Sexuais , Transdução de Sinais/fisiologia
16.
J Endocrinol Invest ; 44(11): 2395-2405, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33677812

RESUMO

BACKGROUND/PURPOSE: Although it is known that there is generally a good correlation between genotypes and phenotypes, the number of studies reporting discrepancies has recently increased, exclusively between milder genotypes and their phenotypes due to the complex nature of the CYP21A2 gene and methodological pitfalls. This study aimed to assess CYP21A2 genotyping in children with 21-hydroxylase deficiency (21-OHD) and establish their predictive genotype-phenotype correlation features using a large cohort in Southeastern Anatolia's ethnically diverse population. METHODS: The patients were classified into three groups: salt-wasting (SW), simple virilizing (SV) and non-classical (NC). The genotypes were categorized into six groups due to residual enzyme activity: null-A-B-C-D-E. CYP21A2 genotyping was performed by sequence-specific primer and sequenced with next generation sequencing (NGS), and the expected phenotypes were compared to the observed phenotypes. RESULTS: A total of 118 unrelated children with 21-OHD were included in this study (61% SW, 24.5% SV and 14.5% NC). The pathogenic variants were found in 79.5% of 171 mutated alleles (60.2%, 22.2%, and 17.6% in SW, SV and NC, respectively). Patient distribution based on genotype groups was as follows: null-16.1%, A-41.4%, B-6.0%, C-14.4%, E-22%). In2G was the most common pathogenic variant (33.9% of all alleles) and the most common variant in the three phenotype groups (SW-38.8%, SV-22.2% and NC-23.3%). The total genotype-phenotype correlation was 81.5%. The correlations of the null and A groups were 100% and 76.1%, respectively, while it was lower in group B and poor in group C (71.4% and 23.5%, respectively). CONCLUSION: This study revealed that the concordance rates of the severe genotypes with their phenotypes were good, while those of the milder genotypes were poor. The discrepancies could have resulted from the complex characteristics of 21-OHD genotyping and the limitations of using NGS alone without integrating with other comprehensive methods.


Assuntos
Hiperplasia Suprarrenal Congênita , Estudos de Associação Genética , Esteroide 21-Hidroxilase/genética , Virilismo , Desequilíbrio Hidroeletrolítico , Adolescente , Hiperplasia Suprarrenal Congênita/diagnóstico , Hiperplasia Suprarrenal Congênita/epidemiologia , Hiperplasia Suprarrenal Congênita/genética , Hiperplasia Suprarrenal Congênita/fisiopatologia , Feminino , Estudos de Associação Genética/métodos , Estudos de Associação Genética/estatística & dados numéricos , Predisposição Genética para Doença , Testes Genéticos/métodos , Humanos , Masculino , Mineralocorticoides/metabolismo , Mutação , Puberdade Precoce/diagnóstico , Puberdade Precoce/etiologia , Esteroide 21-Hidroxilase/metabolismo , Turquia/epidemiologia , Virilismo/diagnóstico , Virilismo/etiologia , Desequilíbrio Hidroeletrolítico/diagnóstico , Desequilíbrio Hidroeletrolítico/etiologia
17.
Mol Cell Endocrinol ; 524: 111168, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33484741

RESUMO

The syndromes of mineralocorticoid excess describe a heterogeneous group of clinical manifestations leading to endocrine hypertension, typically either through direct activation of mineralocorticoid receptors or indirectly by impaired pre-receptor enzymatic regulation or through disturbed renal sodium homeostasis. The phenotypes of these disorders can be caused by inherited gene variants and somatic mutations or may be acquired upon exposures to exogenous substances. Regarding the latter, the symptoms of an acquired mineralocorticoid excess have been reported during treatment with azole antifungal drugs. The current review describes the occurrence of mineralocorticoid excess particularly during the therapy with posaconazole and itraconazole, addresses the underlying mechanisms as well as inter- and intra-individual differences, and proposes a therapeutic drug monitoring strategy for these two azole antifungals. Moreover, other therapeutically used azole antifungals and ongoing efforts to avoid adverse mineralocorticoid effects of azole compounds are shortly discussed.


Assuntos
Antifúngicos/efeitos adversos , Azóis/efeitos adversos , Mineralocorticoides/metabolismo , Animais , Antifúngicos/administração & dosagem , Antifúngicos/sangue , Antifúngicos/química , Azóis/administração & dosagem , Azóis/sangue , Azóis/química , Monitoramento de Medicamentos , Humanos , Síndrome
18.
J Integr Neurosci ; 19(3): 459-467, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-33070525

RESUMO

Depression is closely linked to hypothalamus-pituitary-adrenal axis hyperactivity. Honokiol, a biphenolic lignan compound obtained from the traditional Chinese medicine Magnolia officinalis, can reduce the activity of the hypothalamus-pituitary-adrenal axis and improve depression-like behavior caused by hypothalamus-pituitary-adrenal axis hyperactivity. The current study investigated the specific mechanism of action of this effect. A depression model was established by repeated injections of corticosterone to study the antidepressant-like effect of honokiol and its potential mechanism. Honokiol prevented the elevated activity of the hypothalamus-pituitary-adrenal axis and the depression-like behavior induced by corticosterone. Treatment with honokiol resulted in greater glucocorticoid receptor mRNA expression, greater glucocorticoid receptor-positive expression, and a greater ratio of glucocorticoid receptor to the mineralocorticoid receptor in the hippocampus. Moreover, honokiol treatment led to lower levels of interleukin-1ß in serum and the positive expression of the interleukin-1ß receptor in the hippocampus. These results demonstrate that the antidepressant-like mechanism of honokiol, which has effects on inflammatory factors, may act through restoring the typical activity of the hypothalamus-pituitary-adrenal axis by regulating the glucocorticoid receptor-mediated negative feedback mechanism and the balance between glucocorticoid and mineralocorticoid receptors.


Assuntos
Antidepressivos/administração & dosagem , Compostos de Bifenilo/administração & dosagem , Depressão/metabolismo , Depressão/prevenção & controle , Lignanas/administração & dosagem , Animais , Corticosterona/administração & dosagem , Depressão/induzido quimicamente , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Mineralocorticoides/metabolismo , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Receptores de Mineralocorticoides/metabolismo
19.
Exp Clin Endocrinol Diabetes ; 128(10): 672-680, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32349159

RESUMO

CONTEXT: NCI-H295 cells are the most widely used model for adrenal steroidogenesis and adrenocortical carcinoma and have been used for decades in laboratories worldwide. However, reported steroidogenic properties differ considerably. OBJECTIVE: To evaluate heterogeneity of steroidogenesis among NCI-H295 cell strains, clarify the influence of culture media and test response to inhibitors of steroidogenesis by using liquid chromatography tandem mass spectrometry (LC-MS/MS). METHODS: NCI-H295 cells were obtained from two cell banks and cultivated in different media. An LC-MS/MS-based panel analysis of thirteen steroids was adapted for cell culture supernatant. Cells were treated with metyrapone, abiraterone and mitotane. RESULTS: Mineralocorticoid synthesis was strongly affected by passaging as reflected by reduction of aldosterone secretion from 0.158±0.006 to 0.017±0.001 µg/106 cells (p<0.05). Relevant differences were also found for cells from two vendors in terms of aldosterone secretion (0.180±0.001 vs. 0.09±0.002 µg/106 cells, p<0.05). Selection of medium strongly impacted on cortisol secretion with>4-fold difference (40.6±5.5 vs. 182.1±23 µg/106 cells) and reflected differential activation of the glucocorticoid pathway. Exposure to abiraterone, metyrapone and mitotane resulted in characteristic steroidogenic profiles consistent with known mechanism of drug action with considerable differences in metabolites upstream of the blocked enzyme. CONCLUSION: We demonstrate that steroid hormone secretion in NCI-H295 cells is strongly affected by the individual strain, passage and growing conditions. These factors should be taken into account in the evaluation of experiments analyzing steroid parameters directly or as surrogate parameters of cell viability.


Assuntos
Carcinoma Adrenocortical , Aldosterona/metabolismo , Androgênios/metabolismo , Antineoplásicos Hormonais/farmacologia , Linhagem Celular Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral/metabolismo , Inibidores Enzimáticos/farmacologia , Glucocorticoides/metabolismo , Mineralocorticoides/metabolismo , Androstenos/farmacologia , Cromatografia Líquida , Humanos , Metirapona/farmacologia , Mitotano/farmacologia , Espectrometria de Massas em Tandem
20.
J Diabetes Complications ; 34(5): 107558, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32075751

RESUMO

AIMS: We aimed to evaluate the associations of mineralocorticoids with type 2 diabetes mellitus (T2DM) and glucose homeostasis among rural Chinese adults. METHODS: A total of 2713 participants were selected from the Henan Rural Cohort study. Serum mineralocorticoids were measured by liquid chromatography-tandem mass spectrometry. Logistic regression and restricted cubic splines were employed to evaluate the associations of mineralocorticoids with pre-diabetes and T2DM. Linear regression was implemented to assess the associations of aldosterone and 11-deoxycorticosterone with different markers of glucose homeostasis by different diabetes status. RESULTS: Elevated aldosterone and 11-deoxycorticosterone were associated with an increased prevalence of pre-diabetes and T2DM (P < 0.05), with a nonlinear dose-response trend, but the association between 11-deoxycorticosterone and T2DM was no statistical significance after adjustment. A 100% increase in ln-aldosterone was associated with a 0.029 mg/dl higher fasting plasma glucose (FPG) and a 1.2% higher HOMA2-IR among those with normal glucose tolerance (NGT), and related to a 0.034 mg/dl lower FPG, a 1.1% higher HbA1c and a 1.3% higher HOMA2-ß among individuals with pre-diabetes. A 100% increment in ln-11-deoxycorticosterone was associated with a 16% increase in HbA1c and a 5.6% decrease in HOMA2-ß in participants with T2DM. CONCLUSIONS: Higher aldosterone and 11-deoxycorticosterone are associated with T2DM risk and glucose homeostasis disorder among different diabetes status.


Assuntos
Aldosterona/sangue , Desoxicorticosterona/sangue , Diabetes Mellitus Tipo 2/epidemiologia , Glucose/metabolismo , Estado Pré-Diabético/epidemiologia , Idoso , Aldosterona/metabolismo , Biomarcadores/sangue , Biomarcadores/metabolismo , Glicemia/metabolismo , Estudos de Casos e Controles , China/epidemiologia , Desoxicorticosterona/metabolismo , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Feminino , Glucose/análise , Homeostase , Humanos , Resistência à Insulina , Masculino , Pessoa de Meia-Idade , Mineralocorticoides/sangue , Mineralocorticoides/metabolismo , Estado Pré-Diabético/sangue , Estado Pré-Diabético/metabolismo , Estado Pré-Diabético/fisiopatologia , Prevalência , Fatores de Risco , População Rural/estatística & dados numéricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA